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Metal-insulator-N/P silicon (MINP) solar cells were fabricated using different
substrate resistivity values, different N-layer designs, and different l-layer de-
signs. A shallow junction into an 0.3 _-cm substrate gave best efficiency whereas
a deeper junction into a I-4 _-cm substrate gave improved radiation hardness, l-
layer design variation did little to influence radiation hardness.

INTRODUCTION

Recent trends in silicon solar cell research point towards increased efficiency.
Shallow junction N/P solar cells have been reported with efficiency in the 16 - 18%
range (ref. 1,2). The MINP solar cell was introduced by M. A. Green because of the
high open circuit voltage. This type of cell utilizes an insulator layer over the

shallow N+ region followed by a low work function metal grid. This combination re-
duces surface recombination and dark current, while providing an electric field to
increase ultraviolet response and efficiency.

Solar cells for extraterrestrial applications must withstand electron, proton,
and U.V. radiation while being designed for high efficiency and light weight. Many
aspects of space radiation effects and solar cell performance are discussed in the
Solar Cell Radiation Handbook published by Jet Propulsion Laboratory and NASA (ref.
3). A preliminary report on MINP solar cells was published in IEEE Transactions on
electron Devices (ref. 4). The work reported herein is an extension of the prelim-
inary work in considering different MINP solar cell designs and the resultant in-
fluence of 1.0 MeV electron irradiation.

THEORETICAL CONSIDERATIONS

On a theoretical basis, high efficiency cells should have a shallow junction

depth (xj) to minimize recombination of photo-generated carriers, high emitter doping

(ND) to give a favorable electric field profile, and base doping (NA) of about

7 x lol7/cm 3 to give a lowvalue of reverse saturation current (Job) while perserv-

ing a large diffusion length (Ln). These requirements are illustrated by using

several rather fundamental equations. Thebasic dark current density equation is

* The work described in this paper was performed in part under the sponsorship and

technical direction of International Telecommunications Satellite Organization

(INTELSAT). Any views expressed are not necessarily those of INTELSAT.
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In these equations Job = base current contribution, Joe = emitter current contri-

bution, Jor = space charge layer recombination current contribution, NA = substrate

doping density, Ln = diffusion length in the substrate, Sp = surface recombination,

velocity, ND = doping in the emitter assuming a uniform doping profile, x = space

charge layer width, and to = carrier lifetime. The other terms have their usual

meaning. Open circuit voltage may also be calculated using
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and with Joe > Job for emitter control,
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Equations 3 and 7 clearly show the importance of low surface recombination velocity

(Sp) which is achieved in MINP and MNP-P cells by oxide passivation.

EXPERIMENTAL METHODS

31p at 5 KeV, 2.5 x lol5/
The ion-implanted cells were fabricated by implanting

2
cm onto 0.3 _-cm p-type silicon substrates. The samples were annealed at 850 °C

(30 minutes, N2 flow) followed by 550 °C for l hour to remove the implantation

damage. The back ohmic contact was formed by thermally evaporating Al which was
sintered at 500 - 600 °C during which time a thin oxide layer was allowed to grow

over the entire n-surface for the fabrication of MINP solar cells. Ytterbium, a

low work function metal, followed by Cr and Al, was used for the grid contact.
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Thermally evaporated SiO x served as the antireflection coating. In the case of
0

the MNP-P solar cell, a thick (_ 300 A) SiO 2 layer was grown over the entire n-

surface. Photoli_hography techniques were used to remove the oxide in regions
where the grid contact was to be formed. Examples of these cells are given in
Figure I.

Several values of implantation energy and substrate resistivity were chosen
to examine the theoretical predictions and evaluate radiation effects as well which
may not have an obvious result. Thus, implant energies of 5, I0 and 30 kV were used
with substrate resistivities of 0.1-0.3, 0.3 and I-4 _-cm as shown in Table I.

Also, some MNP-P cells were fabricated by bubbling 02 through trichloroethylene

(TCE) (ref. 5) which produces a Cl-containing oxide for improved surface passivation.
This should reduce S to improve photovoltaic response as predicted by equations
3 and 7. P

Completed cells were tested for photovoltaic performance and spectral response

after edge isolation by a diamond saw. An ELH quartz halogen lamp was calibrated
for AMO illumination by a p/n junction cell previously tested at the NASA-Lewis

Research Center. Spectral response was measured using a Schoeffel GM-IO0 monochro-

mator from 0.4 _m - l.O _m. Samples were irradiated at l.O MeV using a Model GS

High Voltage Engineering Van de Graff accelerator with a water cooled stage to pre-
vent thermal damage during irradiation. Samples were irradiated at fluence levels

of l.O x lol4/cm2, l.O x lol5/cm 2 and l.O x lol6/cm 2 after which the previously
mentioned measurements were conducted.

EXPERIMENTAL DATA

Resistivity and Implant Energy

Two MINP solar cells were fabricated from each of four pairs of the design vari-

ables, substrate resistivity (ps) and implant energy (E). These four conditions are

clearly listed in Tables I and II. Table I considers diode factor and reverse

saturation current density from dark and illuminated I-V curves. Lower n-values and

Jo-values are seen when using lower values of Ps as predicted by eq. (2). A lower

implant energy is also advantageous since lattice damage is reduced and a sharper

electric field profile exists to reduce carrier recombination. Spectral response at

= 0.4 _m is improved for shallow junctions since collection of U.V. photons would
be more efficient.

Radiation effects on the subject samples are listed in Table II indicating a

greater stability for higher Ps" This is not surprising since less dopant reduces

radiation interaction with the dopant atom to create fewer recombination centers.

MINP vs MNP-P-O vs MNP-P-T

0

Cells with a _ 22 A I-layer over the entire surface (MINP) were compared with
0

those having a = 150 A standard SiO 2 I-layer between grid lines (MNP-P-O) or those
0

having a = 150 A Cl-containing SiO 2 I-layer between grid lines (MNP-P-T). Table I

indicates reduced values of n-factor and do for the MNP-P variety since tunneling
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through the thin I-layer is eliminated. A statistical comparison of photovoltaic
(PV) data for the three kinds of cells, in Table III, indicates the MINP cell to

be more efficient due to increased Jsc and Voc. This is attributed to perhaps less

optical absorption in the l-layer and to reduced recombination under the grid lines
in MINP cells. The MNP-P-T cells are slightly more efficient than the MNP-P-O
variety which we attribute to reduced surface recombination from C1 in the oxide.

Spectral response data of Figure 2 indicate the relative order of superiority
from MINP to MNP-P-T to MNP-P-O which agrees with data in Table III. Effects of
1.0 MeV irradiation, shown in Table IV, do not indicate a significant difference
on radiation hardness between these 3 kinds of cells. This points to the substrate
as the main point of degradation whereas the surface damage is minimal.

Effects of irradiation on dark I-V data for MINP compared to MNP-P-T cells is
given in Figures 3 and 4. At low voltages, MINP cells exhibit an increased current
component, which may be due to tunneling and which is quite insensitive to irradia-
tion. The MNP-P-T cell current was sensitive to radiation at low voltages and more
sensitive at higher voltages than was the MINP cell. Irradiation effects on spectral
response were quite similar for all 3 designs with an example given for the MNP-P-T
cell in Figure 5. All cells exhibited a trend towards increased U.V. response after

lOl6e-/cm 2 irradiation which at this time is unexplained. The trend was most pre-

valent for the pictured MNP-P-T variety.

DISCUSSION

MINP-type cells are quite insensitive to 1.0 MeV e- irradiation in the U.V. re-
sponse meaning that the surface damage is minimal. Most reduction in performance

is due to bulk damage as evidenced by spectral response data, increased Jo' decreased

Voc, and decreased Jsc" Diffusion length typically decreases to 8-10 _m at 1016

e-/cm 2 regardless of the starting value. There is a trend in cell efficiency to
decrease to a certain value even though original efficiency values may vary. The

measured value of Ln in equation (2) accurately predicts the increased Job which

accurately predicts the reduced Voc using equation (5). For example, equation (2)

predicts Job = 3 x 10-13 A/cm 2 before irradiation with Ln = 250 _m and 1.2 x I0 -II

A/cm 2 after irradiation with Ln = 6 _m. This corresponds to a change in Voc from

669 mV to 554 mV which is 115 mV or 17% whereas experimentally we observed an
average change of about 105 mV which is 17%. The good agreement between experiment
and theory is evidence that bulk damage and not surface damage is the controlling

factor in degradation. MINP cell efficiency is maximized for Ps = 0.3 _-cm whereas

the radiation tolerance is improved for Ps > 1.0 _-cm. A design trade-off is thus

suggested to obtain both high efficiency and radiation hardness. Figure 6 gives a

comparison of Voc and efficiency loss due to irradiation for the MINP cell, con-

ventional, and advanced N/P Si cells. The MINP cell is clearly superior in Voc

and in efficiency for electron fluence < 1015 e-/cm 2. The proposed new goals for

surface passivated cells would predict a performance superior to existing silicon
cells. Use of Ga-doped Si (ref. 6) or Li counterdoping (ref. 7) may give an MINP
cell with even better performance at high fluence levels.
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TABLEI

INFLUENCE OF FABRICATION CONDITION ON COMPONENTSOF I-V EQUATION

Reverse Saturation

Diode Factor Current Density Spectral

Response
Substrate Implant Dark Light

Resistivity Energy Jod 2 Jo_ _ @ 0.4 um
(_-cm) (RV) nd n_ (mA/cm) (mA/cm_ (mA/mW)

l - 4 30 1.69 1.28 4.5x10 -8 2.5x10 -9 0.19

O.l - 0.3 30 1.80 1.33 1.8xlO -7 2.0xlO -9 0.20

0.3 lO 1.58 1.15 3.0xlO -9 4.0xlO -ll 0.22

0.3 5 1.58 1.17 4.0x10 -9 5.0xlO -ll 0.24

0.3 5 1.42 1.05 1.2xlO -9 9.8xi0 -12

0.3 5 1.39 1.05 7.9x10 -lO 8.0xlO -12

152



TABLEII

EFFECTOFl.O MeVe- RADIATIONUPONAVERAGEPHOTOVOLTAICOUTPUTOF ,
MINPCELLSHAVINGDIFFERENTSUBSTRATERESISTIVITYANDIMPLANTATIONENERGY

OPEN CIRCUIT VOLTAGE, Voc

Substrate Implant Initial

Cell Resistivity Energy Value After lOl5e-/cm 2 After lOl6e-/cm 2

Numbers (_-cm) (kV) (V) (V) (% dec.) (V) (% dec.)

694, 697 l - 4 30 0.575 0.527 8.4 0.490 14.6

714, 716 O.l - 0.3 30 0.585 0.556 4.9 0.516 ll.9

745, 746 0.3 lO 0.600 0.563 6.2 0.516 14.0

776, 784 0.3 5 0.618 0.569 7.9 0.516 16.5

SHORT CIRCUIT CURRENT DENSITY, Jsc

Substrate Implant Initial

Cell Resistivity Energy Value After lOl5e-/cm 2

Numbers (_-cm) (kV) (mA/cm2) (mA/cm2) (% dec.)

694, 697 l - 4 30 46.2 36.0 22.0

714, 716 O.l - 0.3 30 42.2 30.6 27.4

745, 746 0.3 lO 42.7 30.5 28.6

776, 784 0.3 5 45.7 34.0 25.6

After lOl6e-/cm2

(mA/cm2) (% dec.)

28.6 38.2

20.7 51.0

21.5 44.6

23.4 48.0

EFFICIENCY, q

Substrate Implant Initial

Resistivity Energy ValueCell

Numbers (_-cm) (kV) (%)

After lOl5e-/cm2

(%) (% dec. )

After lO16e-/cm2

(%) (% dec.)

694, 697 l - 4 30 13.5 9.3 30.9 7.1 47.6

714, 716 O.l - 0.3 30 12.5 8.2 34.2 5.2 57.6

745, 746 0.3 lO 14.2 9.4 34.2 5.0 64.3

776, 784 0.3 5 15.6 9.9 36.6 4.8 69.2

* Simulated AMO illumination. All Jsc and n-values are based on active area.
Total area is about I0% more.
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TABLE Ill

STATISTICAL DATA FOR PHOTOVOLTAIC PERFORMANCEOF
.

MINP, MNP-P-O AND MNP-P-T SOLAR CELLS

Cell #
Voc Jsc 2
(mV) (mA/cm) FF n(%) Type of Cel I

Average

Standard
Deviation

Average

Standard

Deviation

Average

Standard
Deviation

* Tested with

737 630 35.1 0.70 15.5

703 617 36.9 0.72 16.4

765 631 36.7 0.80 18.5

769 626 35.1 0.80 17.5

730 624 35.9 0.72 16.2

784 615 35.1 0.77 16.6

624 35.8 0.75 16.8

6.04 0.76 0.04 0.97

720 610 34.8 0.74 15.8

735 624 34.5 O.74 16.0

731 611 32.1 0.73 14.4

615 33.8 0.74 15.4

6.38 1.21 0.005 0.71

756 622 34.3 0.78 16.6

783 606 34.5 0.78 16.4

750 615 31.8 0.74 14.5

614 33.5 0.77 15.8

6.55 l.22 0.02 0.94

simulated AMI illumination

MINP

MINP

MINP

MINP

MINP

MINP

MNP-P-O

MNP-P-O

MNP-P-O

MNP-P-T
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Figure l: Diagram of [A] MINP and [B] MNP-P cells.
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